(3/x+2)-(2/x^2-4)=(1/x-2)

Simple and best practice solution for (3/x+2)-(2/x^2-4)=(1/x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/x+2)-(2/x^2-4)=(1/x-2) equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

3/x-(2/(x^2))+2+4 = 1/x-2 // - 1/x-2

3/x-(1/x)-(2/(x^2))+2+2+4 = 0

3/x-x^-1-2*x^-2+2+2+4 = 0

2*x^-1-2*x^-2+8 = 0

t_1 = x^-1

2*t_1^1-2*t_1^2+8 = 0

2*t_1-2*t_1^2+8 = 0

DELTA = 2^2-(-2*4*8)

DELTA = 68

DELTA > 0

t_1 = (68^(1/2)-2)/(-2*2) or t_1 = (-68^(1/2)-2)/(-2*2)

t_1 = (2*17^(1/2)-2)/(-4) or t_1 = (-2*17^(1/2)-2)/(-4)

t_1 = (2*17^(1/2)-2)/(-4)

x^-1-((2*17^(1/2)-2)/(-4)) = 0

1*x^-1 = (2*17^(1/2)-2)/(-4) // : 1

x^-1 = (2*17^(1/2)-2)/(-4)

-1 < 0

1/(x^1) = (2*17^(1/2)-2)/(-4) // * x^1

1 = ((2*17^(1/2)-2)/(-4))*x^1 // : (2*17^(1/2)-2)/(-4)

-4*(2*17^(1/2)-2)^-1 = x^1

x = -4*(2*17^(1/2)-2)^-1

t_1 = (-2*17^(1/2)-2)/(-4)

x^-1-((-2*17^(1/2)-2)/(-4)) = 0

1*x^-1 = (-2*17^(1/2)-2)/(-4) // : 1

x^-1 = (-2*17^(1/2)-2)/(-4)

-1 < 0

1/(x^1) = (-2*17^(1/2)-2)/(-4) // * x^1

1 = ((-2*17^(1/2)-2)/(-4))*x^1 // : (-2*17^(1/2)-2)/(-4)

-4*(-2*17^(1/2)-2)^-1 = x^1

x = -4*(-2*17^(1/2)-2)^-1

x in { -4*(2*17^(1/2)-2)^-1, -4*(-2*17^(1/2)-2)^-1 }

See similar equations:

| v=1/3*3.14*r*r*h | | (-7.6)+7.5= | | 2n+2=-2 | | 4(7-x)=8 | | -3.114x=-39.459 | | (-0.5)-(-6.226)= | | 2x-4+2=6 | | F(x)=0.5x-3.5 | | 3y+5x=4x | | 1/3x+2/3y=1 | | 8+(-7.3)= | | x=1.25+0.625y | | .6(3x+6)=1.8-(x+2) | | 3x+B=10 | | 144-3x=42x+19 | | (-2.7)+(-4.7)= | | 7/6x=-28 | | (w+8)=1+6w | | (55-49)*(48/8)=36 | | 2n=9 | | 1/2z+7/2=9/2 | | 2b=ph | | (-4.5)-(-1.1)= | | (55-49)+(48/8) | | 9.2x=8+3.2x | | f+4=-16 | | 4+x^2+2.5=x^2 | | (55-49)+(48/8)=36 | | 75-44+6= | | 6x+3x=8x-3 | | 10-7x=-8+2x | | 8(m+3)=12m-4 |

Equations solver categories